1
Views
5
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Novel DNA-Binding Proteins Regulate Intestine-Specific Transcription of the Sucrase-Isomaltase Gene

, &
Pages 3614-3627 | Received 17 Jan 1992, Accepted 18 May 1992, Published online: 01 Apr 2023
 

Abstract

Sucrase-isomaltase (SI) is an enterocyte-specific gene which exhibits a complex pattern of expression during intestinal development and in the adult intestinal mucosa. In the studies described in this report, we demonstrate that enterocyte-specific transcription of the SI gene is regulated by an evolutionarily conserved promoter that extends approximately 180 bp upstream of the transcription start site. DNase I footprint analysis allowed the identification of three nuclear protein-binding sites within the SI promoter (SIF1, SIF2, and SIF3 [SI footprint]), each of which acted as a positive regulatory element for transcription in intestinal cell lines. SIF1 was shown to bind nuclear protein complexes present in primary mouse small intestinal cells and in an intestinal cell line (Caco-2). However, SIFl-binding proteins were absent in a variety of other epithelial and nonepithelial cells. In vitro mutagenesis experiments demonstrated that the SIF1 site is required for high-level promoter activity in intestinal cells. The SIF3 element formed prominent binding complexes with intestinal and liver nuclear extracts, whereas nuclear proteins from other epithelial and nonepithelial cells formed weaker complexes of different mobilities. The SIF2 element bound nuclear proteins in a pattern similar to that of SIF3, and cross-competition studies suggested that SIF2 and SIF3 may bind the same nuclear proteins. Taken together, these data have allowed the identification of novel DNA-binding proteins that play an important role in regulating intestine-specific transcription of the SI gene.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.