3
Views
6
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

A 5'-3' Exonuclease From Saccharomyces cerevisiae is Required for in Vitro Recombination Between Linear DNA Molecules with Overlapping Homology

&
Pages 3125-3134 | Received 18 Nov 1992, Accepted 26 Feb 1993, Published online: 01 Apr 2023
 

Abstract

When two linear DNA molecules with overlapping, homologous ends were incubated with a yeast nuclear extract, they recombined at the region of homology to produce a joint molecule. We have identified a 5'-3' exonuclease in the extract that is likely to be responsible for the formation of the observed product. We propose that the exonuclease degrades each substrate to reveal regions of complementary sequence which anneal to form a recombinant product. Consistent with this model, we have partially purified the activity that promotes joint molecule formation and found it to cofractionate with a 5'-3' exonuclease activity through three consecutive chromatography steps. We have further characterized the reaction to determine the optimal length of homology. Substrates with homologous terminal overlaps of 29 to 958 bp were capable of product formation, whereas substrates with longer overlaps were not. Extracts prepared from a number of recombination-defective or nuclease-deficient strains revealed no defect in exonuclease activity, indicating that the reaction is likely to be dependent upon the product of an as yet unidentified gene.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.