11
Views
13
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Rapid Changes in Drosophila Transcription After an Instantaneous Heat Shock

&
Pages 3456-3463 | Received 07 Dec 1992, Accepted 03 Mar 1993, Published online: 01 Apr 2023
 

Abstract

Heat shock rapidly activates expression of some genes and represses others. The kinetics of changes in RNA polymerase distribution on heat shock-modulated genes provides a framework for evaluating the mechanisms of activation and repression of transcription. Here, using two methods, we examined the changes in RNA polymerase II association on a set of Drosophila genes at 30-s intervals following an instantaneous heat shock. In the first method, Drosophila Schneider line 2 cells were quickly frozen to halt transcription, and polymerase distribution was analyzed by a nuclear run-on assay. RNA polymerase transcription at the 5' end of the hsp70 gene could be detected within 30 to 60 s of induction, and by 120 s the first wave of polymerase could already be detected near the 3' end of the gene. A similar rapid induction was found for the small heat shock genes (hsp22, hsp23, hsp26, and hsp27). In contrast to this rapid activation, transcription of the histone H1 gene was found to be rapidly repressed, with transcription reduced by approximately 90% within 300 s of heat shock. Similar results were obtained by an in vivo UV cross-linking assay. In this second method, cell samples removed at 30-s intervals were irradiated with 40-microseconds bursts of UV light from a Xenon flash lamp, and the distribution of polymerase was examined by precipitating UV cross-linked protein-DNA complexes with an antibody to RNA polymerase II. Both approaches also showed the in vivo rate of movement of the first wave of RNA polymerase through the hsp70 gene to be approximately 1.2 kb/min.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.