2
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Protein Synthesis in Lysates of Aedes albopictus Cells Infected with Vesicular Stomatitis Virus

&
Pages 1174-1186 | Received 05 Apr 1982, Accepted 08 Jul 1982, Published online: 31 Mar 2023
 

Abstract

Aedes albopictus cells (clone LT-C7) showed a marked cytopathic effect and inhibition of protein synthesis (both host and viral) after infection with vesicular stomatitis virus (VSV), but only if (i) cultures were incubated at 34°C rather than 28°C and (ii) serum was present in the medium (S. Gillies and V. Stollar, Mol. Cell. Biol. 2:66–75, 1982). To learn more about how protein synthesis is shut off in VSV-infected A. albopictus cells, we have compared cell-free protein synthesis in extracts prepared from VSV-infected cells and control cells. Extracts prepared 6 h after infection from VSV-infected cells maintained at 34°C in the presence of serum reflected what was observed with intact cells in at least two respects: (i) they showed a markedly diminished capacity to carry out protein synthesis (whether directed by endogenous or exogenously added mRNA), and (ii) there was decreased phosphorylation in vitro by [γ-32P]ATP of a specific ribosomal protein (Gillies and Stollar, Mol. Cell. Biol. 2:66–75, 1982). In addition, and consistent with a block at the level of initiation, the formation of 80S initiation complexes, as measured by binding of VSV 12 to 18S mRNA, was reduced in the inactive extracts. Addition of an S-100 fraction from uninfected cells to the inactive extract reversed each of the aforementioned changes; i.e., it restored protein synthetic activity, it stimulated the formation of 80S initiation complexes, and it increased phosphorylation of the specific ribosomal protein referred to above. The active component in the S-100 fraction was heat labile and non-dialyzable and, upon ammonium sulfate fractionation of the S-100 fraction, was found in the 40 to 70% saturation fraction. Our findings suggest that VSV infection of A. albopictus cells inhibits protein synthesis by inactivating a macromolecular component, probably a protein, in the S-100 fraction which may be involved in the initiation of protein synthesis. More specifically, we suggest that this component is involved in the joining of the ribosomal subunits to form 80S initiation complexes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.