1
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Genes for Low-Molecular-Weight Heat Shock Proteins of Soybeans: Sequence Analysis of a Multigene Family

, , , &
Pages 3417-3428 | Received 22 Jul 1985, Accepted 19 Sep 1985, Published online: 31 Mar 2023
 

Abstract

Soybeans, Glycine max, synthesize a family of low-molecular-weight heat shock (HS) proteins in response to HS. The DNA sequences of two genes encoding 17.5- and 17.6-kilodalton HS proteins were determined. Nuclease S1 mapping of the corresponding mRNA indicated multiple start termini at the 5′ end and multiple stop termini at the 3′ end. These two genes were compared with two other soybean HS genes of similar size. A comparison among the 5′ flanking regions encompassing the presumptive HS promoter of the soybean HS-protein genes demonstrated this region to be extremely homologous. Analysis of the DNA sequences in the 5′ flanking regions of the soybean genes with the corresponding regions of Drosophila melanogaster HS-protein genes revealed striking similarity between plants and animals in the presumptive promoter structure of thermoinducible genes. Sequences related to the Drosophila HS consensus regulatory element were found 57 to 62 base pairs 5′ to the start of transcription in addition to secondary HS consensus elements located further upstream. Comparative analysis of the deduced amino acid sequences of four soybean HS proteins illustrated that these proteins were greater than 90% homologous. Comparison of the amino acid sequence for soybean HS proteins with other organisms showed much lower homology (less than 20%). Hydropathy profiles for Drosophila, Xenopus, Caenorhabditis elegans, and G. max HS proteins showed a similarity of major hydrophilic and hydrophobic regions, which suggests conservation of functional domains for these proteins among widely dispersed organisms.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.