4
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Structural and Functional Analysis of Chicken U4 Small Nuclear RNA Genes

, , &
Pages 3910-3919 | Received 04 Apr 1986, Accepted 05 Aug 1986, Published online: 31 Mar 2023
 

Abstract

Two distinct chicken U4 RNA genes have been cloned and characterized. They are closely linked within 465 base pairs of each other and have the same transcriptional orientation. The downstream U4 homology is a true gene, based on the criteria that it is colinear with chicken U4B RNA and is expressed when injected into Xenopus laevis oocytes. The upstream U4 homology, however, contains seven base substitutions relative to U4B RNA. This sequence may be a nonexpressed pseudogene, but the pattern of base substitutions suggests that it more probably encodes a variant yet functional U4 RNA product not yet characterized at the RNA level. In support of this, the two U4 genes have regions of homology with each other in their 5′-flanking DNA at two positions known to be essential for the efficient expression of vertebrate U1 and U2 small nuclear RNA genes. In the case of U1 and U2 RNA genes, the more distal region (located near position-200 with respect to the RNA cap site) is known to function as a transcriptional enhancer. Although this region is highly conserved in overall structure and sequence among U1 and U2 RNA genes, it is much less conserved in the chicken U4 RNA genes reported here. Interestingly, short sequence elements present in the -200 region of the U4 RNA genes are inverted (i.e., on the complementary strand) relative to their usual orientation upstream of U1 and U2 RNA genes. Thus, the -200 region of the U4 RNA genes may represent a natural evolutionary occurrence of an enhancer sequence inversion.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.