9
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Regulation of 4F2 Heavy-Chain Gene Expression During Normal Human T-Cell Activation Can Be Mediated by Multiple Distinct Molecular Mechanisms

, , &
Pages 3820-3826 | Received 01 Mar 1988, Accepted 14 Jun 1988, Published online: 31 Mar 2023
 

Abstract

The 4F2 molecule belongs to the set of cell surface antigens which is induced following lectin- or antigen-mediated T-cell activation. The increase in 4F2 cell surface expression following lectin-mediated stimulation has been shown to be accompanied by a parallel increase in the steady-state levels of 4F2 heavy-chain (4F2HC) mRNA. The studies described in this report were designed to further elucidate the molecular mechanisms responsible for induction of 4F2HC gene expression following activation of normal resting human peripheral blood T cells. The low levels of mature 4F2HC mRNA in resting T cells were shown to be the result of a block to transcription elongation within the exon 1-intron 1 region of the 4F2HC gene rather than promoter inactivity. Phorbol myristate acetate stimulation of resting T cells resulted in a 20-fold increase in steady-state 4F2HC mRNA levels which was mediated by removal of this block to transcription elongation. The phorbol myristate acetate-induced increase in 4F2HC gene expression is distinct from previously described AP-1-mediated, phorbol ester-induced gene expression in that it requires new protein synthesis. Treatment of resting T cells with ionomycin plus PMA resulted in a 60-fold increase in 4F2HC mRNA levels. This induction was mediated by both an increase in promoter utilization and removal of the block to transcription elongation. Finally, by increasing the half-life of 4F2HC mRNA, cycloheximide treatment of resting T cells induced an approximately five fold increase in the levels of 4F2HC gene expression, although the physiologic significance of this mechanism remains unclear. These results demonstrate that the level of 4F2HC gene expression in normal peripheral blood T cells can be regulated by at least three distinct molecular pathways: (i) changes in promoter utilization, (ii) modulation of a block to transcription elongation, and (iii) alteration in mRNA stability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.