0
Views
4
CrossRef citations to date
0
Altmetric
Chromosome Structure and Dynamics

Purification and Characterization of OBF1: a Saccharomyces cerevisiae Protein That Binds to Autonomously Replicating Sequences†

&
Pages 2906-2913 | Received 09 Jan 1989, Accepted 04 Apr 1989, Published online: 31 Mar 2023
 

Abstract

We previously identified a protein activity from Saccharomyces cerevisiae, OBF1, that bound specifically to a DNA element present in autonomously replicating sequences ARS120 and ARS121 (S. Eisenberg C. Civalier, and B. K. Tye, Proc. Natl. Acad. Sci. USA 85:743-746, 1988). OBF1 has now been purified to near homogeneity by conventional protein and DNA affinity chromatography. Electrophoresis of the purified protein in sodium dodecyl sulfate-polyacrylamide gels revealed the presence of two polypeptides. The major protein band had a relative molecular size of 123 kilodaltons, and the minor protein band, which constituted only a small fraction of total protein, had a molecular size of 127 kilodaltons. Both polypeptides cochromatographed with the specific ARS120 DNA-binding activity and formed a stable protein-DNA complex, isolatable by sedimentation through sucrose gradients. Using antibodies, we have shown that both polypeptides are associated with the isolated protein-DNA complexes. The ARS DNA-binding activity had a Stokes radius of 54 Å (5.4 nm) and a sedimentation coefficient of 4.28S, as determined by gel filtration and sedimentation through glycerol gradients, respectively. These physical parameters, together with the denatured molecular size values, suggested that the proteins exist in solution as asymmetric monomers. Since both polypeptides recognized identical sequences and had similar physical properties, they are probably related. In addition to binding to ARS120, we found that purified OBF1 bounds with equal affinity to ARS121 and with 5- and 10-fold-lower affinity to ARS1 and HMRE, respectively. Furthermore, in the accompanying paper (S. S. Walker, S. C. Francesconi, B. K. Tye, and S. Eisenberg, Mol. Cell. Biol. 9:2914-2921, 1989), we demonstrate the existence of a high, direct correlation between the ability of purified OBF1 to bind to ARS121 and optimal in vivo ARS121 activity as an origin of replication. These findings, taken together, suggest a role for OBF1 in ARS function, presumably at the level of initiation of DNA replication at the ARS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.