112
Views
41
CrossRef citations to date
0
Altmetric
Articles

Capability of Differently Charged Plasma Polymer Coatings for Control of Tissue Interactions with Titanium Surfaces

, , , , , , , , , , & show all
Pages 1191-1205 | Published online: 02 Apr 2012
 

Abstract

Titanium surfaces were equipped with positively and negatively charged chemical functional groups by plasma polymerization. Their capability to influence the adhesion of human mesenchymal stem cells (hMSCs) and inflammation processes was investigated on titanium substrates, which are representative of real implant surfaces. For these purposes, titanium samples were coated with plasma polymers from allylamine (PPAAm) and acrylic acid (PPAAc). The process development was accompanied by physicochemical surface analysis using XPS, FT-IR and contact angle measurements. Very thin plasma polymer coatings were created, which are resistant to hydrolysis and delamination. Positively charged amino groups improve considerably the initial adhesion and spreading steps of hMSCs. PPAAm and PPAAc surfaces have an effect on the differentiation of hMSCs, e.g., the expression of osteogenic markers in dependence on culturing conditions. Acrylic acid groups appear to stimulate early mRNA differentiation markers (ALP, COL, Runx2) under basal conditions, whereas positively and negatively charged groups both stimulate late differentiation markers, like BSP and OCN, after 3 days of osteogenic stimulation. Long-term intramuscular implantation in rats revealed that PPAAc surfaces caused significantly stronger reactions by macrophages and antigen-presenting cells compared to untreated control (polished titanium) samples, while PPAAm films did not show a negative influence on the inflammatory reaction after implantation.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.