100
Views
13
CrossRef citations to date
0
Altmetric
Articles

Wear-Induced Microtopography Evolution and Wetting Properties of Self-Cleaning, Lubricating and Healing Surfaces

&
Pages 1337-1359 | Published online: 02 Apr 2012
 

Abstract

Adhesion, friction, and stiction constitute a significant problem for small-sized applications, such as microelectromechanical systems (MEMS) and magnetic storage devices. It has been suggested to use surface texturing to decrease the adhesion force between components in these devices using the so-called Lotus effect (surface roughness induced superhydrophobicity and self-cleaning). However, for applications with high friction, such as head-tape interfaces, wear can deteriorate the microstructure, so the Lotus effect will not last for a long time. To overcome this, we suggest using equilibrium surface roughness, which provides Lotus effect properties. We suggest a thermodynamic model for microtopography evolution and equilibrium roughness due to wear and combine this model with the Wenzel and Cassie theories of wetting. The equilibrium roughness is governed by the minimization of deterioration using the minimum entropy production principle. On the other hand, self-healing/cleaning/lubrication is governed by minimum energy and entropy principles, so the combination of the two approaches is discussed. Examples of evolution of wetting properties due to wear of several cases of rough profiles are discussed and certain recommendations on how to decrease friction are formulated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.