103
Views
11
CrossRef citations to date
0
Altmetric
Articles

The Influence of Aromatic Side-Chains on the Aqueous Properties of pH-Sensitive Poly(L-lysine iso-phthalamide) Derivatives

, , &
Pages 1573-1588 | Published online: 02 Apr 2012
 

Abstract

The endosomal membrane has proven to be a challenging barrier for the delivery of therapeutic biomacromolecules, including DNA, siRNA and proteins, which are taken up by endosomes but cannot freely diffuse across lipid bilayers. Anionic polymers that undergo conformational changes and become membrane disruptive in low-pH environments have the potential to assist in the delivery of these biomacromolecules across the endosomal membrane to the cytosol. Such endosomolytic polymers have been synthesized through the grafting of hydrophobic side-chains to a poly(L-lysine iso-phthalamide) backbone. The phenylalanine grafted form of poly(L-lysine iso-phthalamide) has a pH-sensitive membrane disruptive profile corresponding to the pH range of maturing endosomes and, thus, has a favourable endosomolytic profile. In order to understand the influence of hydrophobicity versus π–π interactions mediated by aromatic rings, a tyrosine grafted form of poly(L-lysine iso-phthalamide) was synthesized and its aqueous pH-sensitive properties, cytotoxicity and endosomal disruptive capacity were compared to phenylalanine-grafted poly(L-lysine iso-phthalamide). The similarity between these two polymers' properties, despite the large difference in hydrophobicity between their side-chains, supports the conclusion that the aromatic character of sidechains in poly(L-lysine iso-phthalamide) is an important property, as opposed to hydrophobicity alone, in determining the effectiveness of acidic pH triggered endosomolysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.