264
Views
39
CrossRef citations to date
0
Altmetric
Articles

Morphological and Histological Evaluations of 3D-Layered Blood Vessel Constructs Prepared by Hierarchical Cell Manipulation

, , , , , & show all
Pages 63-79 | Published online: 13 Apr 2012
 

Abstract

Three-dimensional (3D)-layered blood vessel constructs consisting of human umbilical artery smooth muscle cells (SMCs) and human umbilical vascular endothelial cells (ECs) were fabricated by hierarchical cell manipulation, and their basic morphology, histology and blood compatibility were evaluated in relation to the EC layers. For the hierarchical cell manipulation, fibronectin-gelatin (FN-G) nanofilms were prepared on the surface of SMC layers to provide a cell adhesive nano-scaffold for the second layer of cells. The layer number of blood vessel constructs was easily controllable from 2 to 7 layers, and the histological evaluation, scanning electron microscope (SEM) and transmission electron microscope (TEM) observations indicated a hierarchical blood vessel analogous morphology. The immunefluorescence staining revealed homogeneous and dense tight-junction of the uppermost EC layer. Furthermore, the nano-meshwork morphology of the FN-G films like a native extracellular matrix was observed inside the blood vessel constructs by SEM. Moreover, a close association between actin microfilaments and the nano-meshworks was observed on the SMC surface by TEM. The blood compatibility of the blood vessel constructs, 4-layered SMC/1-layered EC (4L-SMC/1L-EC), was clearly confirmed by inhibition of platelet adhesion, whereas the blood vessel constructs without EC layers (4L-SMC) showed high adhesion and activation of the platelet. The 3D-blood vessel constructs prepared by hierarchical cell manipulation technique will be valuable as a blood vessel model in the tissue engineering or pharmaceutical fields.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.