138
Views
66
CrossRef citations to date
0
Altmetric
Papers

Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent

Pages 31-43 | Published online: 02 Apr 2012
 

Abstract

The interest in lignocellulosic fiber composites has been growing in recent years because of their high specific properties. In this work, a new technique was used to prepare specimen to observe the transcrystalline zones in kenaf fiber-polypropylene composites. A maleated polypropylene (MAPP) coupling agent was used to improve the stress-transfer efficiency in the composites. Transcrystallinity was observed for both the uncoupled and coupled composites, although the rate of growth was higher for the coupled composites. Dynamic mechanical spectroscopy was used to observe the relaxations of the composites. The peak temperature of the β-relaxation, associated with the glass-rubber transition of the amorphous molecules, of the coupled composites was higher than that of the uncoupled composites. Restricted molecular mobility due to covalent interactions between the MAPP and the lignocellulosic surface may account for the shift to higher temperatures. It appears that during compounding the extractives sheared from the fiber surface is an important factor in determining the β-relaxation of these composites. The intensities of the α-transition, related to molecular mobility associated with the presence of crystals, is proportional to the fiber volume fraction. Thus it is possible that the molecules responsible for the α-transition are predominantly in the transcrystalline zone. These 'rigid' amorphous molecules in the transcrystalline zone do play a role in composite behavior and need to be considered when tailoring interphases.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.