91
Views
4
CrossRef citations to date
0
Altmetric
Articles

Particle surface treatment for nanocomposites containing ceramic particles

Pages 801-817 | Published online: 02 Apr 2012
 

Abstract

Polymer matrix composites containing dispersed ceramic nanoparticles were formed by UV activated photopolymerization from the reactive liquid monomer hexanediol-diacrylate (HDODA). The polymer forming reaction proceeds by a free-radical mechanism. In forming polymer composites that contain nanoparticles, dispersing the particles as discrete entities is critical for developing optimum properties. In the as-received condition, ceramic particles are aggregated. They must be dispersed in the monomer but if the particles are not surface treated and stabilized, they rapidly settle out of the suspension. Surface modification of the ceramic allows the particles to be suspended in the organic monomer and stabilizes the dispersion so that the particles will not reagglomerate. In this study silanes were employed as surface modifiers to disperse two nano-particulate ceramics in the HDODA monomer. The ceramic particles used are silicon carbide (SiC) and barium titanate (BaTiO3). The shapes and sizes of the ceramic particles were established using transmission electron microscopy (TEM). A method for dispersing nanoparticles was developed in which silane-treated particles were stabilized so that they did not settle out of the liquid monomer. An analytical method based on atomic force microscopy (AFM) was used to characterize the particle distribution in the cured composites. Focusing on work with SiC nanoparticles in HDODA as a model system, the process for silane application was advanced so that it successfully yielded composites having no aggregates with particle sizes closely matching those of the neat ceramic particles.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.