122
Views
28
CrossRef citations to date
0
Altmetric
Articles

A comparison of the mechanical strength and stiffness of MWNT-PMMA and MWNT-epoxy nanocomposites

&
Pages 285-297 | Published online: 02 Apr 2012
 

Abstract

The surface of multi-wall carbon nanotubes (MWNTs) was functionalized by covalent linking of long alkyl chains. Such functionalization led to a much better tube dispersion in organic solvents than pristine nanotubes, favored the formation of homogenous nanocomposite films, and yielded good interfacial bonding between the nanotubes and two polymer matrices: a thermo-set (Epon 828/T-403) and a thermoplastic (PMMA). Tensile tests indicated, however, that the reinforcement was greatly affected by the type of polymer matrix used. Relative to pure PMMA, a 32% improvement in tensile modulus and a 28% increase in tensile strength were observed in PMMA-based nanocomposites using 1.0 wt% nanotube filler. Contrasting with this, no improvement in mechanical properties was observed in epoxy-based nanocomposites. The poorer mechanical performance of the latter system can be explained by a decrease of the crosslinking density of the epoxy matrix in the nanocomposites, relative to pure epoxy. Indeed we demonstrate that the presence of nanotubes promotes an increase in the activation energy of the curing reaction in epoxy, and a decrease of the degree of curing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.