59
Views
16
CrossRef citations to date
0
Altmetric
Articles

Stress analysis and strength evaluation of single-lap band adhesive joints of dissimilar adherends subjected to external bending moments

&
Pages 67-92 | Published online: 02 Apr 2012
 

Abstract

Single-lap band adhesive joints of dissimilar adherends subjected to external bending moments are analyzed as a four-body contact problem using a two-dimensional theory of elasticity (plane strain state). In the analysis, the upper and lower adherends and the adhesive which are bonded in two regions are replaced by finite strips. In the numerical calculations, the effects of the ratio of Young's moduli of the adherends, the ratio of the adherend thicknesses, and the ratio of the band length to the half lap length on the stress distributions at the interfaces are examined. A method for estimating the joint strength is proposed using the interface stress and strain obtained by the analysis. An elasto-plastic finite element analysis (EP-FEA) was conducted for predicting the joint strength more exactly. Experiments to measure strains and the joint strength were also carried out. The results show that the strength of a single-lap band adhesive joint is almost the same as that of a single-lap adhesive joint in which the two adherends are completely bonded at the interfaces. Thus, the single-lap band adhesive joints are useful in the design of single-lap joints.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.