72
Views
9
CrossRef citations to date
0
Altmetric
Articles

Surface modification of poly(tetrafluoroethylene) films by plasma polymerization and UV-induced graft copolymerization for adhesion enhancement with electrolessly-deposited copper

, &
Pages 727-746 | Published online: 02 Apr 2012
 

Abstract

Surface modification of H2 plasma-pretreated poly(tetrafluoroethylene) (PTFE) films, either by plasma polymerization and deposition of GMA, or by UV-induced graft copolymerization with glycidyl methacrylate (GMA), was carried out for adhesion enhancement with the electrolesslydeposited copper. XPS and FTIR results revealed that the epoxide groups in the plasma-polymerized GMA (pp-GMA) layer had been preserved to various extents, depending on the glow discharge conditions. The T-peel adhesion test results showed that the adhesion strengths of the electrolesslydeposited copper on both the pp-GMA modified PTFE (pp-GMA-PTFE) film and the GMA graftcopolymerized PTFE (GMA-g-PTFE) film were much higher than that of the electrolessly-deposited copper on the pristine or the H2 plasma-treated PTFE film. The high adhesion strength between the electrolessly-deposited copper and the surface-modified PTFE film was attributed to the fact that the plasma-polymerized and the UV graft-copolymerized GMA chains were covalently tethered on the H2 plasma-pretreated PTFE surface, as well as the fact that these GMA chains were spatially and interactively distributed into the copper matrix.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.