316
Views
52
CrossRef citations to date
0
Altmetric
Articles

Adhesion improvement of electroless copper to a polyimide film substrate by combining surface microroughening and imide ring cleavage

Pages 1027-1040 | Published online: 02 Apr 2012
 

Abstract

In order to enhance the adhesion strength of copper metal film to a polyimide (PI) film substrate, a method combining surface microroughness formation and imide ring cleavage was investigated. The results showed that imide rings were cleaved with a KOH treatment while carboxyl and amide groups were formed on the surface of the PI film. The surface micro-roughness did not change with the KOH treatment, and the adhesion strength of the copper metal film to the PI film was slightly improved to 30 g/mm, which could be attributed to the interaction of both carboxyl and amide groups with the copper atoms. When the PI films were successively treated with an alkaline permanganate and a KOH solution, many recesses were formed on the surface in an alkaline permanganate solution, and the size and depth of the recesses increased with alkaline permanganate treatment time. The results of the AFM measurements showed that the average roughness (R) increased from 3.54 to 10.23 nm after combined treatment with alkaline permanganate and KOH solutions. The adhesion strength of the copper metal film to the PI film reached 150 g/mm, which was five times greater than that achieved with the KOH treatment only.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.