164
Views
21
CrossRef citations to date
0
Altmetric
Articles

Modeling of cohesive failure processes in structural adhesive bonded joints

Pages 287-299 | Published online: 02 Apr 2012
 

Abstract

This paper presents an approach to predicting the strength of joints bonded by structural adhesives using a finite element method. The material properties of a commercial structural adhesive and the strength of single-lap joints and scarf joints of aluminum bonded by this adhesive were experimentally measured to provide input for and comparison with the finite element model. Criteria based on maximum strain and stress were used to characterize the cohesive failure within the adhesive and adherend failure observed in this study. In addition to its simplicity, the approach described in this paper is capable of analyzing the entire deformation and failure process of adhesive joints in which different fracture modes may dominate and both adhesive and adherends may undergo inelastic deformation. It was shown that the finite element predictions of the joint strength generally agreed well with the experimental measurements.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.