124
Views
7
CrossRef citations to date
0
Altmetric
Articles

Surface modification of boron fibres for improved strength in composite materials

Pages 857-877 | Published online: 02 Apr 2012
 

Abstract

When boron fibres are combined with an organic matrix, such as an epoxy resin, a high-performance composite structure is created. This study investigates the surface chemistry of plasma- and organosilane-treated boron fibres with the key aim to improving the adhesion properties between the boron fibre and the epoxy matrix. Optimisation of this interfacial region plays a critical role in influencing the mechanical behaviour of composite materials and has considerable industrial applications in the aerospace and manufacturing industries. The surface chemistry of a model boron surface and boron fibres was monitored using a combination of X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Initial investigation of the as-received fibres showed the presence of silicone contamination on the fibre surface, which would affect adhesion. Removal of this contaminant through solvent cleaning and plasma oxidation provided an ideal surface for attachment of the organosilane adhesion promoter. A model for the interaction of the organosilane with a boron surface is proposed. The pull-out strength of boron fibres, with different surface treatments, embedded in the epoxy resin was measured using a custom designed adhesiometer. Compared with as-received boron fibres, a 6-fold improvement in the apparent interfacial shear strength was achieved for the organosilane treated fibres. Optical microscopy was used to determine the failure mechanisms between the fibre and epoxy resin. Typically, as the surface treatment improved adhesion, the locus of failure changed from the boron–epoxy interface to failure within the epoxy and ultimately fibre breakage.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.