66
Views
9
CrossRef citations to date
0
Altmetric
Articles

An energy-based failure criterion for delamination initiation in electronic packaging

Pages 1375-1386 | Published online: 02 Apr 2012
 

Abstract

The significance of interfacial delamination as a crucial failure mechanism in electronic packaging has been documented in many papers. A number of failure criteria have been used to solve the problems with a pre-crack at the interface. However, in real electronic packages, the size and location of the cracks or/and delamination cannot be predicted. It is not easy to use the traditional fracture criteria to deal with more complicated 3D delamination problems. The epoxy molding compound (EMC)/copper leadframe interface was selected in this study. A series of button shear tests were conducted to evaluate the interfacial adhesion between the EMC and copper. In each test, the failure load acting on the EMC of the button shear sample was measured at different shear angles and a finite element model was used to evaluate the stresses at the EMC/copper interface. In this paper, an energy-based failure criterion is proposed using both the interfacial distortional and hydrostatic strain energy densities as two failure parameters. Stresses were extracted from the numerical simulation in order to calculate the interfacial distortional strain energy density, U d, and the interfacial hydrostatic strain energy density, U h, related, respectively, to the shear and tensile modes. U d and U h were averaged within a selected region of the finite element model where it exhibits high interfacial strain energy density values.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.