65
Views
2
CrossRef citations to date
0
Altmetric
Articles

A generalized stress singularity approach for material failure prediction and its application to adhesive joint strength analysis

Pages 981-995 | Published online: 02 Apr 2012
 

Abstract

The concept of stress is very useful to describe the effect of external loads on structures. However, as a basis for the prediction of failure the concept of stress becomes meaningless when the structure encompasses singularities as a result of discrete stiffness steps or geometric anomalies such as cracks. In this article it is argued that the concept of failure stress is incorrect and should be replaced by a generalized concept based on stress intensity factors and singularity orders. It appears that material failure stress is the critical stress intensity factor for a zero-order singularity stress field. By plotting the critical stress intensity factor as a function of singularity order, the strength of a material can be characterized in a general fashion that integrates tensile strength, fracture toughness and critical singularities in adhesive joints. It is also shown that plasticity does not eliminate the stress singularity in an adhesive joint but changes the order of the singularity due to the induced change in interface corner angle between the dissimilar materials in the joint.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.