70
Views
10
CrossRef citations to date
0
Altmetric
Articles

Chemorheology of Epoxy/Nickel Conductive Adhesives During Processing and Cure

&
Pages 957-981 | Published online: 02 Apr 2012
 

Abstract

Epoxy/nickel adhesives can be used as integrated circuit (IC) packaging material due to their lower cost than epoxy/silver adhesives with acceptable electrical conductivity. In this work, chemorheological behaviors of Epon 830/Ni/diethylenetriamine (DETA) adhesives were investigated during processing and cure, as a function of shear rate, resin conversion, Ni volume fraction and temperature. A strongly nonlinear characteristic of filled epoxy/Ni systems was revealed, and a steady shear had to be employed for chemorheological analyses. A strongly non-Newtonian flow behavior was observed for epoxy/Ni adhesives also during cure. The power-law model, Castro–Macosko model, Liu model and the Arrhenius model adequately describe, respectively, the effects of shear rate, resin conversion, filler volume fraction and temperature on chemoviscosity. A comprehensive model combining these individual models predicts the isothermal chemoviscosity data well and the nonisothermal data reasonably. A modified comprehensive model was also proposed in this work to improve the model fit to nonisothermal experimental data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.