66
Views
29
CrossRef citations to date
0
Altmetric
Articles

Application of the surface free energy concept in polymer processing

, , , &
Pages 1381-1396 | Published online: 02 Apr 2012
 

Abstract

The surface characteristics of variously treated carbon and glass fibres have been determined by contact angle measurements (using a capillary rise technique), inverse gas chromatography, and zeta potential measurements. The contact angles of water and methylene iodide were used to calculate the dispersive and non-dispersive components of the fibre surface free energy by applying the geometric mean approach, and the approach by Fowkes to estimate the acid-base term of the thermodynamic work of adhesion. The results obtained correlate with those of inverse gas chromatographic and zeta potential measurements. The non-polar surface character of the carbon fibre can be altered by oxidizing, or finishing the fibres with an epoxy resin. The acid-base term of the thermodynamic work of adhesion, Wab a, and the non-dispersive component of the surface free energy, γp s, are increased drastically by these treatments. Treatment of the 'high-energy' glass fibre surface with an aminosilane results in a relatively low surface free energy with basic surface groups. When epoxy dispersions were used for sizing the glass fibres, the surface free energy increased without changing the basic surface character. A direct correlation between the surface-energetic properties of the fibres and the mechanical behaviour of the fibre-reinforced polyamide composites was not generally found.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.