43
Views
9
CrossRef citations to date
0
Altmetric
Articles

Surface photografting of low-density polyethylene films and its relevance to photolamination

, , , , , & show all
Pages 1211-1227 | Published online: 02 Apr 2012
 

Abstract

Surface modifications of pristine and ozone-pretreated low-density polyethylene (LDPE) films were carried out via UV-induced graft copolymerization with a photoinitiator-containing, epoxy-based commercial monomer (DuPont Somos™ 6100 for solid imaging and optical lithography) and also with the photoinitiator-free acrylic acid (AAc). The chemical composition and microstructure of the graft copolymerized surfaces were studied by angle-resolved X-ray photoelectron spectroscopy (XPS). The concentration of surface grafted polymer increased with the UV illumination time and the monomer concentration. For LDPE films graft copolymerized with the epoxy-based monomer, surface chain rearrangement was not observed or was less well pronounced, due to the partial crosslinking of the grafted chains. Simultaneous photografting and photolamination between two LDPE films, or between a LDPE film and a poly(ethylene terephthalate) (PET) film, in the presence of either monomer system, were also investigated. The photolamination rates and strengths depend on the ozone pretreatment time, the UV illumination time, and the UV wavelength, as well as on the nature of the substrate materials. A shear adhesion strength approaching 150 N/cm2 could be achieved with either monomer system, provided that the polymer films were pretreated with ozone. The failure mode of the photolaminated surfaces was cohesive in nature in the case of the photoinitiator-containing epoxy monomer, but was either cohesive or adhesional in nature (depending on the substrate assembly) in the case of the photoinitiator-free AAc monomer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.