205
Views
40
CrossRef citations to date
0
Altmetric
Articles

XPS study of the PET film surface modified by CO2 plasma: effects of the plasma parameters and ageing

, &
Pages 735-751 | Published online: 02 Apr 2012
 

Abstract

Chemical modification of the PET surface by carbon dioxide plasma treatment has been studied using X-ray photoelectron spectroscopy (XPS). The plasma process results mainly in the formation of carbonyl, carboxyl, and carbonate groups at the PET surface. Under rather mild treatment conditions (low plasma power combined with a short treatment time), the formation of C-O bonds was found to be dominant, whereas the formation of highly oxidized carbon or double-bonded oxygen-containing groups required a high plasma power or a relatively long treatment time. The treatments performed under excessive conditions frequently led to degradation at the polymer surface. Angle-resolved XPS analyses performed on a freshly modified PET film showed a slight decrease in the O/C atomic ratio when the take-off angle (TOA) increased, indicating a relatively uniform distribution of oxygen within the sampling depth (estimated to be about 8 nm at 80° TOA). The chemical composition of the plasma-modified surface was found to be relatively stable on extended storage in air under ambient conditions. The decrease in oxygen-containing groups at the carbon dioxide-plasma-treated PET surface upon ageing is mainly ascribed to the surface rearrangement of macromolecular segments, the loss of oxygen-containing moieties introduced by the plasma treatment, and the possible migration of non-affected PET chains from the bulk to the surface region.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.