83
Views
7
CrossRef citations to date
0
Altmetric
Articles

Stability assessment of chitosan–sodium hexametaphosphate capsules

Pages 1207-1225 | Published online: 02 Apr 2012
 

Abstract

The assessment of the stability of capsules based on chitosan-sodium hexametaphosphate complex formation has been carried out using two independent methods - compression and osmotic swelling, and the influence of the preparation variables was evaluated. The formulation containing 1.5% core polymer (chitosan) and 1.5% oligophosphate, in the absence of salt or at low ionic strength (0.15% NaCl) was found to provide the best membrane resistance. A higher concentration of crosslinker (2.25%) produced stable capsules only in absence of electrolyte. Mannitol, a porogen added to the preparation solutions, did not affect the stability of the obtained membranes. At elevated polyol (1%) and crosslinker levels (2.25%), and at 0% salt, membranes with decreased elasticity were obtained, having lower compression and osmotic bursting values and lower deformation at the breaking points. A significant influence of salt amount on the capsule stability was also found. This was attributed to changes in the membrane formation process resulting in membranes with different thickness and structure. Membrane compression stability was found to be dependent on the pH of both oligophosphate and chitosan solutions, as well as on the reaction time. The bursting force values decreased for capsule diameters below 1.6 mm. The increased membrane/capsule volume ratio for the small capsules decreased the capsule deformation freedom and caused capsule rupture at low force values. The capsules made at low salt amounts showed very good storage stability over time and at elevated temperatures. The results demonstrated that the capsules could be formulated with controlled properties for various biomedical applications.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.