104
Views
26
CrossRef citations to date
0
Altmetric
Articles

Mechanical properties and in vitro degradation of self-reinforced radiopaque bioresorbable polylactide fibres

Pages 665-676 | Published online: 02 Apr 2012
 

Abstract

The aim of this study was to evaluate the effect of the radiopaque filler, barium sulfate (BaSO4), on the mechanical properties of self-reinforced bioresorbable fibres. The bioresorbable polymer was a copolymer of L- and D-lactide with an L/D monomer ratio of 96 :4 (96L/4D PLA). The fibres were manufactured using an extrusion and a drawing process. Three different methods of processing the composites were studied. The materials were blended prior to extrusion. In the first method, the BaSO4 powder was mixed with the polymer granulates by hand (manual blending). The blend was then processed using a twin-screw extruder. The second and third methods utilized a single-screw extruder. In the second method, the BaSO4 powder was manually mixed with the polymer prior to extrusion. In the third method, the BaSO4 powder was mechanically attached on the polymer granulates (mechanical blending) prior to extrusion. The mechanical and chemical properties of the radiopaque bioresorbable fibres were measured after processing and during in vitro degradation. The fibres were gamma, plasma or EtO sterilized. There was no statistical difference in the mechanical properties of the fibres when manufactured using the twin-screw extrusion with manual blending or the single-screw extrusion with mechanical blending. The gamma sterilization markedly decreased the initial intrinsic viscosity of all fibres, whereas the plasma and EtO sterilization methods had no effect on the initial intrinsic viscosity. During in vitro testing, the loss in the intrinsic viscosity occurred at the same rate whether the fibres were loaded with the barium sulfate or not.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.