295
Views
73
CrossRef citations to date
0
Altmetric
Articles

Surface properties of PEO–silicone composites: reducing protein adsorption

Pages 531-548 | Published online: 02 Apr 2012
 

Abstract

Silicone-based polymers with reduced protein adsorption were successfully prepared by incorporating mono- or bifunctional poly(ethylene oxide) (PEO) derivatives, respectively, into PDMS during rubber formation using classic room temperature vulcanization chemistry. Characterization of the films by water contact-angle measurements and XPS showed that the PEO was present on the film surface, with greater amounts of PEO at the interface modified with monofunctional PEO. Scanning electron microscopy showed the PEO domains segregated into regular zigzag patterns on the PEO-modified surfaces. Significant reductions in the adsorption of fibrinogen, albumin and lysozyme were observed on both PEO-modified surfaces, although the monofunctional PEO surfaces performed much better in this regard. The reductions in protein adsorption were comparable for all three proteins on both surfaces, suggesting that molecular mass of the protein is not a significant factor in determining the magnitude of protein deposition. Western blot studies showed that the adsorption of proteins from plasma to the monofunctional PEO-modified surfaces was also significantly reduced and surprisingly selective, with very few bands noted relative to the control surfaces and those modified with bifunctional PEO.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.