76
Views
12
CrossRef citations to date
0
Altmetric
Articles

Novel polyelectrolyte complexes based on poly(methacrylic acid)-bis(2-aminopropyl)poly(ethylene glycol) for oral protein delivery

&
Pages 1125-1139 | Published online: 02 Apr 2012
 

Abstract

In the present investigation a simple and effective strategy was employed for the development of pH-sensitive self-assembling microparticles based on poly(methacrylic acid) (PMAA)-bis(2-aminopropyl)poly(ethylene glycol) (APEG), and their efficiency in oral protein delivery was evaluated. An inter-ionic gelation process was employed for the preparation of microparticles and particles were obtained spontaneously during the process without using any surfactants or stabilizers. Particle size analysis was carried out to measure average particle size and surface morphology was evaluated using scanning electron microscopy (SEM). Bovine serum albumin (BSA) was incorporated onto these microparticles to evaluate the loading and release properties of the matrix. PMAA-APEG microparticles displayed pH responsive release profile, as less than 10% of encapsulated BSA was released at pH 1.2 in 2 h and more than 80% of loaded protein was released within 3 h at pH 7.4. Carboxymethyl β-cyclodextrin (CMβCD)-insulin non-covalent inclusion complex was prepared to enhance the stability of insulin formulations and complex formation was analyzed by fluorescence spectroscopic studies. CMβCD-complexed insulin was encapsulated into PMAA-APEG microparticles by a diffusion filling method and biological activity of entrapped insulin was evaluated using an ELISA. Finally mucoadhesive studies of PMAA-APEG microparticles were carried out on freshly excised rat intestinal mucosa at neutral pH to establish the adhesive nature of the material.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.