1,755
Views
218
CrossRef citations to date
0
Altmetric
Reviews

Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach

, , , , , & show all
Pages 603-621 | Published online: 02 Apr 2012
 

Abstract

In this study we describe how to use a two-dimensional fast Fourier transform (2D FFT) approach to measure fiber alignment in electrospun materials. This image processing function can be coupled with a variety of imaging modalities to assign an objective numerical value to scaffold anisotropy. A data image of an electrospun scaffold is composed of pixels that depict the spatial organization of the constituent fibers. The 2D FFT function converts this spatial information into a mathematically defined frequency domain that maps the rate at which pixel intensities change across the original data image. This output image also contains quantitative information concerning the orientation of objects in a data image. We discuss the theory and practice of using the frequency plot of the 2D FFT function to measure relative scaffold anisotropy and identify the principal axis of fiber orientation. We note that specific degrees of scaffold anisotropy may represent a critical design feature in the fabrication of tissues that will be subjected to well-defined uniaxial mechanical loads. This structural property may also represent a source of guidance cues that can be exploited to regulate cell phenotype.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.