87
Views
17
CrossRef citations to date
0
Altmetric
Articles

Effects of the Surface Characteristics of Polyhydroxyalkanoates on the Metabolic Activities and Morphology of Human Mesenchymal Stem Cells

, , , &
Pages 17-36 | Published online: 02 Apr 2012
 

Abstract

Polyhydroxyalkanoates (PHAs) are a newer family of biomaterials for tissue-engineering applications. The objective of this study is to investigate the behavior of human mesenchymal stem cells (hMSCs) grown on various PHA films. The surface characteristics of PHA co-polymer films were varied by the content of 3-hydroxyvalerate (HV) or 3-hydroxyhexanoate (HHx) and by the film preparation methods such as compression-molding and solvent-casting. Hyaluronic acid (HA) was further applied to modify the surface properties of PHA membranes. As HV content increased, the crystallinity and the hydrophobicity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) membranes decreased and the metabolic activity of hMSCs raised, although the distribution and morphology of hMSCs did not show significant variation. Hyaluronic acid (HA) coating on PHA membranes could improve the metabolic activity and reduce the death rate of hMSCs. Aggregates and spheroidal clusters of hMSCs were found on the surface of cast poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) membranes. The growth of hMSCs was remarkably influenced by various surface characteristics of the PHA films.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.