67
Views
3
CrossRef citations to date
0
Altmetric
Articles

Molecular Mechanism of Caspase-3-Induced Gene Expression of Polyplexes Formed from Polycations Grafted with Cationic Substrate Peptides

, , , , , , , , & show all
Pages 967-980 | Published online: 02 Apr 2012
 

Abstract

We previously reported a novel disease-site-specific gene targeting system that can release plasmid DNA (pDNA) from polymeric carriers responding to abnormally activated signal proteins in disease cells. In this study, the molecular mechanism of the gene targeting system responding to Caspase-3 activity was studied in detail. The polymeric carrier used was composed of a neutral main chain polymer and a grafted oligocationic peptide which contains the substrate sequence of Caspase-3. The polyplex formed from the polymeric carrier and pDNA was stable in physiological saline solution and protected from access of RNA polymerase and the transcriptional factors. These results indicate that the polyplex adopts a core-shell-like structure with a polyion complex core surrounded by neutral main chain polymers. In spite of the inert character of the polyplex to transcription, the polyplex afforded the access of Caspase-3 to the substrate peptide because the electrostatic interaction between each peptide and DNA is essentially weak. After the Caspase-3 reaction, the polyplex was weakened and then became available as a template for transcription.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.