159
Views
15
CrossRef citations to date
0
Altmetric
Articles

Modulation of the Keratinocyte–Fibroblast Paracrine Relationship with Gelatin-Based Semi-interpenetrating Networks Containing Bioactive Factors for Wound Repair

&
Pages 1005-1030 | Published online: 02 Apr 2012
 

Abstract

Gelatin-based semi-interpenetrating networks (sIPNs) containing soluble and covalently-linked bioactive factors have been shown to aid in wound healing; however, the biological responses elicited by the introduction of sIPN biomaterials remain unclear. In the current study, modulation of the re-epithelialization phase of wound healing by sIPNs grafted with PEGylated fibronectin-derived peptides and utilized as platforms for the delivery of exogenous keratinocyte growth factor (KGF) was evaluated. Following wounding, keratinocyte migration, proliferation and protein secretion is largely controlled by diffusible factors, such as KGF, released by the underlying fibroblasts. The impact of sIPNs and exogenous KGF upon the latter keratinocyte–fibroblast paracrine relationship and keratinocyte behavior was explored by monitoring keratinocyte adhesion and cytokine (IL-1α, IL-1β, IL-6, KGF, GM-CSF and TGF-α) release. Results were generally similar for keratinocyte monoculture and keratinocyte–fibroblast co-culture systems. Although keratinocyte adhesion increased over time for positive control surfaces, adhesion to the sIPNs remained low throughout the course of the study. Release of IL-1α and GM-CSF was increased by exogenous KGF. The effects were more noticeable on the positive control surfaces relative to the sIPN surfaces. Regulation of the release of TGF-α was surface dependent, while IL-6 release was dependent upon surface type, the inclusion of exogenous KGF and the presence of fibroblasts. The findings indicate that during re-epithelialization, sIPNs containing soluble bioactive factors aid in wound healing primarily by serving as conduits for KGF, which induces the release of other key cytokines involved in tissue repair.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.