68
Views
4
CrossRef citations to date
0
Altmetric
Articles

Modulating the Activities of Human Mesenchymal Stem Cells (hMSCs) and C3A/HepG2 Hepatoma Cells by Modifying the Surface Characteristics of Poly(3-hydroxybutyrate-co-3-hydroxyhexnoate) (PHBHHx)

, , , &
Pages 1275-1293 | Published online: 02 Apr 2012
 

Abstract

The new biodegradable polyester poly(3-hydroxybutyrate-co-3-hydroxyhexnoate) (PHBHHx) has a potential application in tissue engineering. The aim of this study was to present a deeper picture of the relationship between the cellular behavior and the surface characteristics of PHBHHx films. The pristine PHBHHx film was prepared by adopting the compression-molding method, and then the acrylic acid molecules were grafted on PHBHHx membrane surface by UV irradiation. The hydrophilic nature and surface roughness of various PHBHHx films were controlled by adjusting the acrylic acid concentration and the UV irradiation time. Although the surface characteristics of various PHBHHx films could not affect the metabolic activity of hMSCs, the performance of morphology of hMSCs was deeply affected by the hydrophilic nature and the orientation of surface scars. The hydrophilic nature would effectively improve the spread of hMSCs, and the orientation of surface scars would guide the growth direction of cytoskeleton (actin) inside hMSCs. In contrast, the behaviors of C3A/HepG2 hepatoma cells presented an opposite outcomes. Those surface characteristics were obviously associated with the performance of metabolic activity of C3A cells, but not with the morphology of C3A cells. Both hMSCs and C3A cells have unique cellular characteristics; therefore, their responses to environmental stimulations are significantly different.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.