286
Views
91
CrossRef citations to date
0
Altmetric
Articles

The Effect of Sericin with Variable Amino-Acid Content from Different Silk Strains on the Production of Collagen and Nitric Oxide

, , , &
Pages 1295-1306 | Published online: 02 Apr 2012
 

Abstract

Although silk sericin (SS) enhances the growth and attachment of fibroblast cells, its toxicity remains questionable. We investigated the effect of SS extracted by heat with variable amino-acid content on in vitro collagen promotion and nitric oxide synthesis. After 24 h of incubation, SS, especially from the Chul 1/1 strain which has the most methionine and cysteine content, enhanced fibroblast growth. The molecular mass of heat-extracted SS from these three strains showed a slightly different range, but within 20–200 kDa, which were all identified as sericin. SS from all strains promoted type-I collagen production in a concentration-dependent manner, while SS from Chul 1/1 strain could induce the highest amount of collagen synthesis when compared to SS from other strains. Nitric oxide was found in the culture medium after activation by SS from the Chul 1/1 strain but reached a level that was not toxic to the cells. We conclude that SS is not toxic to fibroblast cells. Moreover, methionine and cysteine content in SS are important factors to promote cell growth and collagen synthesis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.