158
Views
43
CrossRef citations to date
0
Altmetric
Articles

Improvement of blood compatibility on cellulose hemodialysis membrane: IV. Phospholipid polymer bonded to the membrane surface

, , , &
Pages 271-282 | Published online: 02 Apr 2012
 

Abstract

To improve the surface blood compatibility on a cellulose hemodialysis membrane, 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers with a phospholipid polar group were immobilized on the surface through covalent bonding. The MPC polymers had a carboxylic group, which can react with hydroxyl groups on the cellulose membrane, and were synthesized by conventional radical polymerization. The reaction between the MPC polymers and the cellulose membrane was carried out in a heterogeneous system using a condensation reagent. Surface analysis of the modified membrane by X-ray photoelectron spectroscopy revealed the immobilization of the MPC polymer on the surface. The mechanical strength and permeability for a solute of the membrane did not change even after the modification. The modified cellulose membrane was blood-compatible, as determined by the prevention of adhesion, deformation, and aggregation of platelets after contact with platelet-rich plasma. Based on these results, it is concluded that the MPC polymers may be a useful material for improving the blood compatibility of cellulose hemodialysis membranes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.