47
Views
23
CrossRef citations to date
0
Altmetric
Articles

Artificial Neural Networks for Calculating the Characteristic Impedance of Air-Suspended Trapezoidal and Rectangular-Shaped Microshield Lines

Pages 1161-1174 | Published online: 03 Apr 2012
 

Abstract

Neural models for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines, based on the multilayered perceptrons (MLPs), are presented. Six learning algorithms, bayesian regulation (BR), Levenberg-Marquardt (LM), quasi-Newton (QN), scaled conjugate gradient (SCG), resilient propagation (RP), and conjugate gradient of Fletcher-Powell (CGF), are used to train the MLPs. The characteristic impedance results obtained by using neural models are in very good agreement with the results available in the literature. When the performances of neural models are compared with each other, the best test result is obtained from the MLPs trained by the BR algorithm.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.