54
Views
2
CrossRef citations to date
0
Altmetric
Articles

Analysis of Thickness-Dependent Optical Properties in a One-Dimensional Superconducting Photonic Crystal

, &
Pages 1113-1122 | Published online: 03 Apr 2012
 

Abstract

The thickness-dependent optical properties in a one-dimensional superconducting photonic crystal consisting of alternating superconductor and dielectric layers are theoretically investigated by using the transfer matrix method in a stratified structure. Based on the calculated transmittance spectrum, the photonic bandgaps, passbands, and the bandedges are analyzed as functions of the thicknesses of the constituents. It is shown that the band shift is primarily dominated by the thickness change of the dielectric layer and the band enhancement can be mainly controlled by the thickness change in the superconducting layer. By choosing a suitable thickness for the superconducting or dielectric material, the higher second and third passbands can be forced to merge as a single wider second passband.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.