303
Views
18
CrossRef citations to date
0
Altmetric
Articles

Metamaterial-Based Millimeter-Wave Switchable Leaky Wave Antennas for On-Chip Implementation in Gaas Technology

, &
Pages 49-61 | Published online: 03 Apr 2012
 

Abstract

A planar, metamaterial-based, one-dimensional periodic structure that can be switched between multiple states is numerically investigated. It can be fabricated at low cost in gallium-arsenide (GaAs) technology for antenna-on-chip and system-on-chip millimeterwave applications. The device radiates in the leaky wave region and its radiation pattern can be changed by switching between states in addition to changing the frequency, over a wide bandwidth. It can also be employed to obtain nearly identical radiation patterns at different frequencies due to its reconfigurability. This digitally programmable device presents dynamic shifting of the band-gap by as much as 80 GHz. Tunability is obtained by externally controlled FET switches, directly integrated into the device in the GaAs substrate. The switches dynamically change reactive loads imposed by N rectangular patches in each unit cell, positioned below a microstrip line, allowing the device to switch between 2 N states. A representative CAD model is presented, giving closer attention towards the requirements of commercial GaAs monolithic MMIC fabrication processes. Interesting radiation characteristics of this leaky wave antenna are presented and discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.