82
Views
77
CrossRef citations to date
0
Altmetric
Articles

The Finite-Difference Time-Domain (FD-TD) Method for Electromagnetic Scattering and Interaction Problems

&
Pages 243-267 | Published online: 03 Apr 2012
 

Abstract

This paper summarizes the formulation and recent applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic scattering and interaction problems. One of the goals of this paper is to demonstrate that recent advances in FD-TD modeling concepts and software implementation, combined with advances in computer technology, have expanded the scope, accuracy, and speed of FD-TD modeling to the point where it may be the preferred choice for structures that cannot be easily treated by conventional integral equation and asymptotic approaches. As a class, such structures are electrically large, and have complex shapes, material compositions, apertures, and interior cavities. The discussion is highlighted by a succinct review of recent FD-TD modeling validations and research frontiers in radar cross section, coupling to wires and wire bundles in free space and cavities, scattering from surfaces in relativistic motion, inverse scattering, supercomputer and mini-supercomputer software, and radiation condition theory. The paper concludes with a summary of the strong and weak points of FD-TD, and guidelines concerning when FD-TD should (or should not) be applied to high-frequency electromagnetic modeling problems.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.