28
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effects of Anisotropy of Ferrite Coating On the Radiation Characteristics of a Cylindrical Conductor Excited By Elementary Sources

&
Pages 287-307 | Published online: 03 Apr 2012
 

Abstract

In this paper, radiation characteristics of an arbitrarily oriented source in an anisotropic multilayered cylindrical structure are investigated by using the state transition matrix approach. Full wave transversal field equations in spectral domain are derived for anisotropic medium in cylindrical coordinates. These expressions are formed into a set of linear first order differential equations. The solution at each layer is expressed in terms of the state transition matrices which are evaluated numerically. Fields are matched at the interfaces. Far fields are evaluated asymptotically by using the steepest descents method. Numerical results are presented for a conducting cylinder coated with an anisotropic ferrite excited by Hertzian dipole. The effects of changing the bias magnetic field of the ferrite and the other medium parameters on the radiation characteristics are examined. Beam scanning, beam splitting, pattern shaping, beamwidth adjustment and control on cross polarized component can be obtained by varying the medium parameters.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.