Publication Cover
Canadian Metallurgical Quarterly
The Canadian Journal of Metallurgy and Materials Science
Volume 50, 2011 - Issue 1
156
Views
10
CrossRef citations to date
0
Altmetric
Original Article

The mineralogy of pyrrhotite from Sudbury CCN and Phoenix nickel ores and its effect on flotation performance

, &
Pages 10-19 | Received 26 Feb 2010, Accepted 26 Jul 2010, Published online: 22 Nov 2013
 

Abstract

The non‐stoichiometric sulphide pyrrhotite (Fe1−xS), common to many nickel ores, occurs in a variety of crystallographic forms and compositions. In order to manipulate its performance in nickel processing operations either to target the recovery or rejection or pyrrhotite, one needs an understanding of pyrrhotite mineralogy, reactivity and the effect this may have on its flotation performance. In this study, a non‐magnetic Fe9S10 pyrrhotite from Sudbury CCN in Canada and a magnetic Fe7S8 pyrrhotite from Phoenix in Botswana were selected to explore the relationship between mineralogy, reactivity and microflotation. Non‐magnetic Sudbury pyrrhotite was less reactive in terms of its oxygen uptake and showed the best collectorless flotation recovery. Magnetic Phoenix pyrrhotite was more reactive and showed poor collectorless flotation, which was significantly improved with the addition of xanthate and copper activation. These differences in reactivity and flotation performance are interpreted to be a result of the pyrrhotite mineralogy, the implications of which may aid in the manipulation of flotation performance.

La pyrrhotine sulfureuse non stoechiométrique (Fe1−xS), commune à plusieurs minerais de nickel, se retrouve sous une variété de formes cristallographiques et de compositions. Afin de manipuler son rendement lors des opérations de traitement du nickel, soit afin de viser la récupération ou bien la rejection de la pyrrhotine, on a besoin de comprendre la minéralogie de la pyrrhotine, sa réactivité et leur effet sur le rendement de sa flottation. Dans cette étude, on a choisi une pyrrhotine non magnétique, Fe9S10, de Sudbury CCN au Canada et une pyrrhotine magnétique, Fe7S8, de Phoenix au Botswana, pour explorer la relation entre la minéralogie, la réactivité et la microflottation. La pyrrhotine non magnétique de Sudbury était moins réactive par rapport à son absorption d'oxygène et a montré la meilleure récupération par flottation sans collecteur. La pyrrhotine magnétique de Phoenix était plus réactive et a montré une mauvaise flottation sans collecteur, que l'on a améliorée significativement avec l'addition de xanthate et l'activation au cuivre. Ces différences de réactivité et de rendement de la flottation sont interprétées comme étant un résultat de la minéralogie de la pyrrhotine, dont les implications peuvent aider à manipuler le rendement de la flottation.

Sincere appreciation goes to Impala Platinum, Norilsk Nickel, VALE Inco and Senmin for their financial support of this research project and to Martin Verster for his advice and interest in the use of the OSCAR/reactivity number technology.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.