90
Views
13
CrossRef citations to date
0
Altmetric
Regular Papers

Effect of carbon content, sintering temperature, density, and cooling rate upon properties of prealloyed Fe–1·5Mo powder

, &
Pages 270-274 | Published online: 19 Jul 2013
 

Abstract

Mixtures of prealloyed Fe–1·5Mo (Astaloy Mo) with and without additions of 0·5–1·2 wt-%C were prepared and their sintering, as well as their mechanical, properties investigated under different process conditions. It was found that carbon content, sintering temperature, and cooling rate had marked effect on physical and mechanical properties. Sintered density decreased with increase in carbon content and sintering temperature. On the other hand, UTS, TRS, and hardness values improved with up to 0·8 wt-%C addition, sintering temperature, and cooling rate. Percentage elongation decreased with increase in carbon content and cooling rate, but was higher for specimens sintered at higher temperatures. The as sintered microstructures consisted of either fine or coarse pearlite, upper or lower bainite, and their mixture depending on the carbon content and cooling rate. The heat treated mechanical properties showed some improvement for the specimens containing 0·5 and 0·8 wt-%C. It became evident that a variety of ternary low alloy steels consisting of Fe + 1·5Mo + 0·5–0·8 wt-%C can be produced and used in the as sintered or heat treated conditions for PM structural parts having good physical and mechanical properties as well as high dimensional accuracy with acceptable microstructures.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.