59
Views
6
CrossRef citations to date
0
Altmetric
Articles

Microstructure evolution in Fe–Mn–C during step sintering

, , , &
Pages 244-250 | Published online: 19 Jul 2013
 

Abstract

Mn was introduced, with graphite, as fine ferromanganese particles to form compacts of Fe–3%Mn–0·5%C. Each was sintered in dry 25%H2 + 75%N2 for 3 min at 770, 1040, 1080, 1170 and 1220°C respectively, held for 3 min and quenched. The surface of a successively heated specimen was similarly examined. Specimens were sectioned and, especially the reacting ferromanganese particles and adjoining regions, investigated using light and scanning electron microscopy and EDX. Development of microstructure and microcompositions during sintering was related, from 740°C, to diffusion and condensation of Mn vapour on iron particle surfaces and subsequent chemical reactions. Above 1080°C microstructures included features resulting from a transient liquid phase, in accord with a ∼45 wt%Mn ternary eutectic calculated by ThermoCalc. The thicknesses of the highly Mn enriched regions were substantially higher than those resulting from bulk Mn diffusion in the Fe lattice; our interpretation invokes predominant operation of another type of mechanism: diffusion induced grain boundary migration.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.