Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 24, 2002 - Issue 7
46
Views
31
CrossRef citations to date
0
Altmetric
Articles

Role of nitric oxide synthase against MPTP neurotoxicity in mice

, , , , , , & show all
Pages 655-662 | Published online: 19 Jul 2013
 

Abstract

1-Methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) causes nigrostriatal dopaminergic pathway injury similar to that observed in Parkinson's disease. Many hypotheses have been proposed to explain the mechanisms underlying MPTP neurotoxicity. Previous work showed that the inhibitor of neuronal nitric oxide synthase (nNOS) might produce protection against MPTP-induced dopaminergic toxicity. To exactly test the role of NO in MPTP neurotoxicity, we examined the effect of nNOS inhibitor 7-nitroindazole, in comparison with that of nonselective NOS inhibitor (L-NAME), immunosuppressant (FK-506), monoamine oxidase (MAO) inhibitors (clorgyline and pargyline), N-methyl-D-aspartate receptor antagonist (MK-801) and Ca2+ antagonist (amlodipine). Among seven compounds, 7-nitroindazole produced dose-dependent protection against MPTP-induced depletion of striatal dopamine and its metabolite 3,4-dihydroxyphenyl acetic acid (DOPAC) in mice. Clorgyline and pargyline also showed a significant effect on MPTP-induced dopamine depletion in the mouse striatum. However, both compounds did not protect against MPTP-induced depletion of striatal DOPAC. Our immunohistological study with tyrosine hydroxylase (TH) and microtuble-associated protein 2 (MAP 2) showed that 7-nitroindazole or pargyline can protect against MPTP-induced depletion of TH and MAP 2 immunostained neurons in the substantia nigra. Furthermore, these compounds reduced a marked increase in GFAP-positive astrocytes of the mouse striatum after MPTP treatments. The present study demonstrates that nNOS inhibitor 7-nitroindazole as well as MAO inhibitors clorgyline and pargyline can produce dose-dependent neuroprotection against the dopaminergic neurotoxicity of MPTP. However, nonselective NOS inhibitor L-NAME, immunosuppressant FK-506, NMDA receptor antagonist MK-801 and Ca2+ antagonist amlodipine did not show a beneficial effect on MPTP neurotoxicity.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.