366
Views
98
CrossRef citations to date
0
Altmetric
Regular Papers

Modelling microstructural and mechanical properties of ferritic ductile cast iron

Pages 261-269 | Published online: 19 Jul 2013
 

Abstract

It is well known that the mechanical properties of ductile cast iron (DCI) depend on its microstructure, and that the microstructure depends on the properties of the melt and the cooling conditions during casting. There have been many studies of the individual elements of the process of casting DCI, but as yet there have been very few examples of modelling the entire process to predict cooling rates, microstructure, and mechanical properties, particularly for large castings. The present paper describes a method of modelling the microstructural and mechanical properties of ferritic DCI, and applies the methods to the case of a large (13 t) thick walled (300 mm thickness) casting. The microstructure calculated includes nodule count, nodularity, ferrite grain size, and percentage ferrite. The mechanical properties calculated include yield stress, tensile strength, elongation, and static upper shelf fracture toughness (J 1C and K JC). The calculated results compare well with those of a test casting.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.