240
Views
20
CrossRef citations to date
0
Altmetric
Articles

Effect of austenite deformation on crystallographic texture during transformations in microalloyed bainitic steel

Pages 875-886 | Published online: 19 Jul 2013
 

Abstract

The evolution of the texture of ferrite as a function of the coiling temperature has been studied in a hot rolled Nb alloyed CMnMoCrB complex phase steel by means of electron backscatter diffraction. Coiling that steel at 720 ° C led to ferrite and pearlite, and coiling at 550 ° C produced a bainite-martensite microstructure. The presence of residual austenite in the steels coiled at 680 and 550 ° C allowed for texture measurements in γ. Analyses of texture gave fundamental information on the decomposition of γ in both the recrystallised state and the deformed state. It was found that austenite, initially deformed below the non-recrystallisation temperature Tnr, recrystallised statically d partially during the γ α and the γ d α b transformations. In the specimen coiled at 680 ° C, primary ferrite and bainite could be distinguished based on the confidence indexof the diffraction pattern. A clear variant selection was observed for the γ d α b transformation, as arotation of ϖ 1 = 30 ° occurred inthe austenite between the ferrite and the bainite formations. The bainite was found to result mainly from the decomposition of the brass {110} 〈 112 〉 and Goss {110} 〈 001 〉 orientations of deformed austenite. The residual austenite was found to be recrystallised γ γ austenite with the cube{001} 〈 100 〉 orientation. Coiling simulations were performed in a dilatometer starting from different austenite grains sizes and deformation states. In the most deformed specimens, the deformation state of the austenite and the combined effects between the different alloying elements presentin the steel were responsible for a solute drag like effect.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.