429
Views
76
CrossRef citations to date
0
Altmetric
Articles

Influence of grain size on tensile properties of Al-Mg alloys

Pages 1349-1354 | Published online: 02 Dec 2013
 

Abstract

Grain size refinement is an important strengthening mechanism in Al-Mg 5000 series alloys, which have a relatively large Hall-Petch slope compared with other Al alloys. In addition, the high work hardening rate exhibited by Al-Mg alloys provides excellent formability. This paper investigates the influence of grain size on the flow stress over a range of strains, and in several different Al-Mg alloys. It is found that the Hall-Petch slope decreases after yield, indicating that the large grain size effect is primarily associated with initiating plasticity in these alloys. Beyond yield the slope decreases to a value equivalent to other, non-Mg containing alloys, and shows no clear dependence on strain. The intercept stress from the Hall-Petch plots at different strains is non-linear with ϵ 1/2 for alloys containing up to 3 wt-%Mg, which indicates that the free slip distance is strain dependent in these alloys. In an Al-5 wt-%Mg alloy the intercept stress is linear with ϵ 1/2, indicating that solute atoms are controlling the free slip distance. If Mn is added to the Al-5 wt-%Mg alloy, as it is in commercial alloys, it has little influence on the grain size dependence, but it does increase the frictional stress at the highest Mn level of 0.7 wt-%.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.