81
Views
19
CrossRef citations to date
0
Altmetric
Articles

Evolution of dynamic recrystallisation in AISI 304 stainless steel

Pages 1648-1652 | Published online: 19 Jul 2013
 

Abstract

The nucleation and development of dynamic recrystallisation (DRX) has been studied via hot torsion testing of AISI 304 stainless steel. The DRX behaviour was investigated with microstructural analysis and slope changes of flow stress curves. The characteristics of serrated grain boundaries observed by SEM, electron backscattered diffraction and TEM indicated that the nucleated DRX grain size was similar to that of the bulged part of the original grain boundary. The DRX of the alloy was nucleated and developed by strain induced grain boundary migration and by the necklace mechanism. Before the steady state in the flow curve at 1000 ° C and 0.5 s-1, the dynamically recrystallised grains did not remain a constant size and gradually grew to the size of fully DRX grains at steady state (30 μm). The calculation of the grain size was based on X DRX (volume fraction of dynamically recrystallisation) under the assumption that the nucleated DRX grains grow to the steady state continuously. It was found that the calculated grain size of the alloy was good agreement with that of the observed grain size. It is expected that a fine grained steel can be obtained by controlling hot deformation conditions on the basis of newly developed equations for predicting DRX behaviour.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.